Neuvano

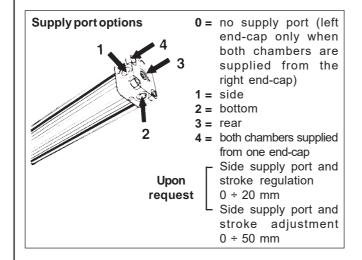
RODLESS CYLINDERS Series S/VL

Working pressure: 3 ÷ 10 bar
Ambient temperature: -20° ÷ +80°C
Medium: filtered air, with or without lubrication lubricated air is recommended for strokes in excess of 500 mm
Bore size: Ø 25 - 32 - 40 - 50 mm
Standard stroke to 6 m
Min. speed required for even translation: 7 ÷ 20 mm/s
Operating speed: 3 m/s (max)
Carriage options:standard, medium, long and twin standard

Integral guides: sliding on ball bearings or on plastic bearings are available (see technical characteristics of the relevant Series).

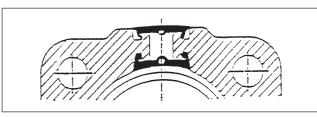
Upon request

- Magnetic option for Series S1; for all the other Series the magnetic option is achieved through a magnetic switch mounting rail, (to be ordered separately) Series DK. See page 2.27


- Slide unit with standard or long carriage for Series S1 (Series J30 - J31).

See page 2.26

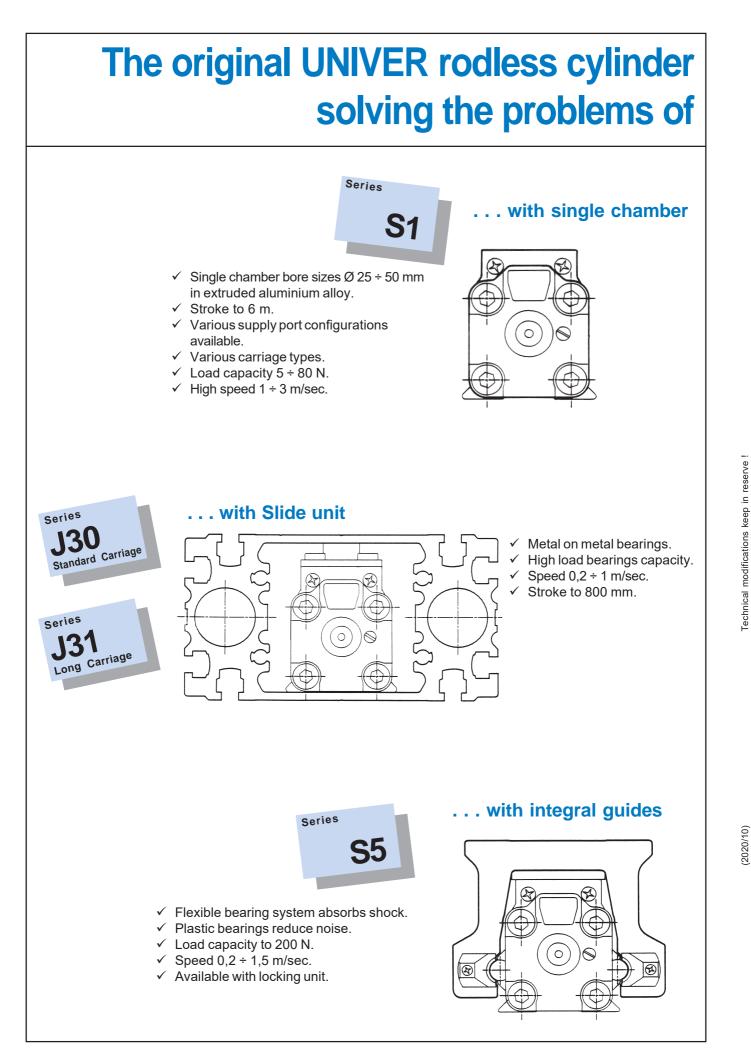
- Locking unit for Series S5 - V1 - V2 (Series L6). See page 2.23.04


End caps in die - cast light alloy with various supply port options (see picture below).

The unique method of stripseal attachment permits easy assembly and disassembly, without the need for tools or the necessity for continous adjustment.

Slideway sealing. The pneumatic sealing is achieved through an axial elastomer stripseal reinforced with Kevlar, more resistant than steel (2100 N/mm²) and with a similar strain limit and a 2%. This system guarantees dimensional stability even with high speeds.

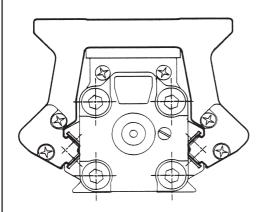
The external protection seal consists of a thermoplastic stripseal reinforced with Kevlar.


Piston - Carriage assembly in extruded aluminium alloy with thermoplastic plane guide bearings.

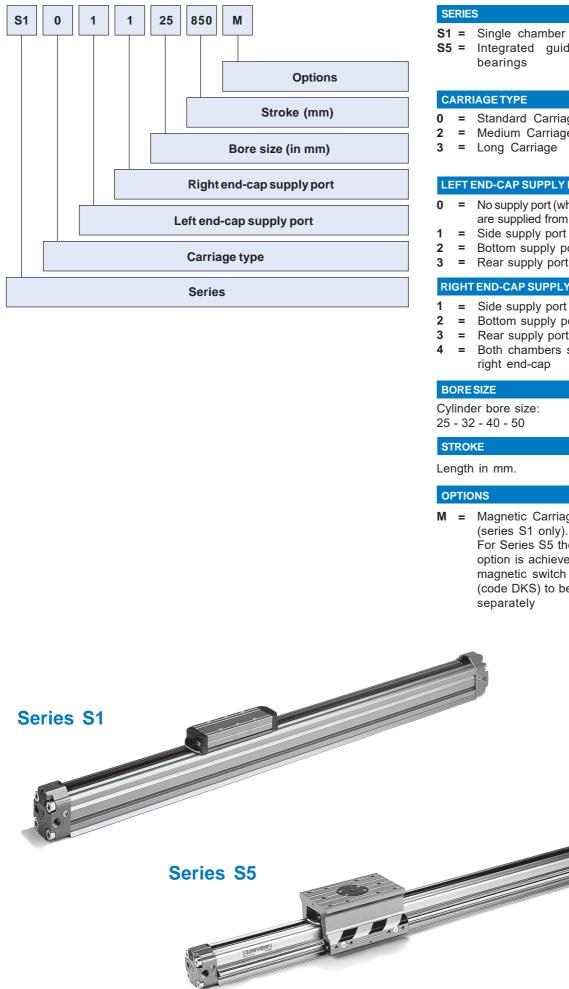
The piston is fitted with double lip seals which automatically self-compensate against wear. Pistons with permanent magnets are a standard option (S1 series only).

Cylinder barrel in extruded aluminium alloy with internal and external anodisation.

Pneumatic adjustable cushions with two regulation screws in each end-cap allow an improved regulation of piston deceleration.


Mechanical rubber shock absorbers avoid mechanical stress and reduce machinery noise (below 50 dB).

Technical modifications keep in reserve !


with the most versatile range in the world automation and positional control.

... with integral guides at 90°

- ✓ Heavy duty series.
- $\checkmark~$ Rigid bearing system for higher torques.
- ✓ Carriage runs on ball bearings.
- ✓ Load capacity to 400 N.
- ✓ Speed 0,2 ÷ 1 m/sec.
- ✓ Available with locking unit.

- Single chamber
- Integrated guides/plastic
- Standard Carriage
- Medium Carriage

LEFT END-CAP SUPPLY PORT

- = No supply port (when both chambers are supplied from the right end-cap)
- Bottom supply port
- Rear supply port

RIGHT END-CAP SUPPLY PORT

- Side supply port
- Bottom supply port
- Rear supply port
- Both chambers supplied from the right end-cap

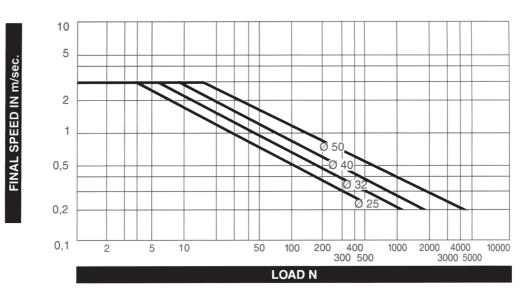
Cylinder bore size:

M = Magnetic Carriage (series S1 only). For Series S5 the magnetic option is achieved through a magnetic switch mounting rail (code DKS) to be ordered separately

EXAMINATION AND VERIFICATION OF THE CUSHIONING

In a system with moving masses, as in the case of rodless cylinder, it is essential to control the dissipation of the system's kinetic energy as it is brought to a stop.

It is necessary, first of all, to establish and verify the most suitable method of cushioning the system, in order to avoid the moving mass (carriage with load) striking against the endcaps and compromising the life of the cylinder.


If the point corresponding to a given load and speed lies **beneath** the appropriate curve, the cushioning is able to absorb the kinetic energy of the system.

Vice versa if the point lies **above** the curve, the cushioning is not able to absorb the kinetic energy, in which case you must : a) decrease the load and maintain the translation speed

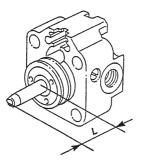
- b) decrease the speed and maintain the load
- c) select a cylinder with a bigger bore or with twin chambers.

The cushioning capacity is shown in the diagram below, referenced to the final speed as the carriage approaches the endcaps.

Cushioning for Series S1 - S5 - VL1

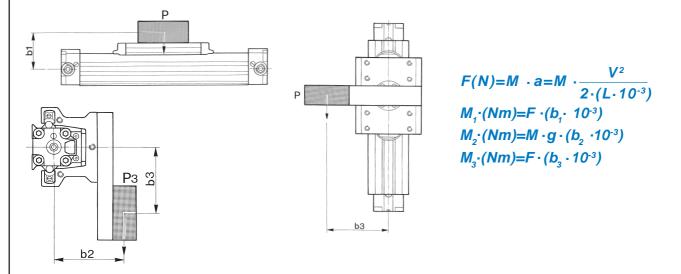
If it is not possible to absorb the kinetic energy with the cushioned endcaps and it to modify the parameters (A - B - C shown on page above), it is essential to use an additional means of cushioning in order to reduce the load/speed before the cylinder strikes the cushion.

The additional cushion can be:

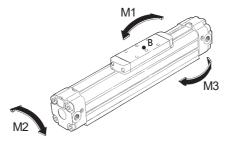

- a pneumatic cushion
- a hydraulic cushion

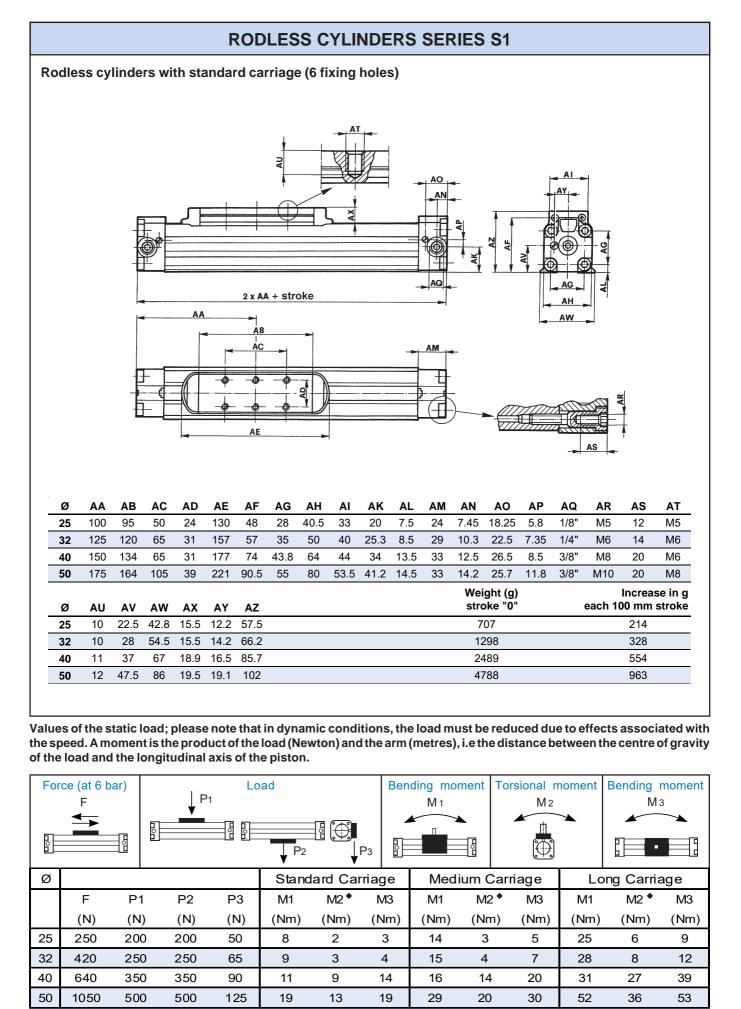
The mass movement causes loads on the cylinder connected both to the weight forces, with constant values, and to the inertia forces which originate in the acceleration phases of the piston at the beginning and at the end of the stroke.

A typical fatigue stress arises in which the load value affects the structure life. The following allowable loads refer to a life expectancy of 20.000 km.


The indicated values (in the corresponding pages of each series) represent the maximum values of the forces and of the momenta which can originate during acceleration phases. Thus, to evaluate the congruity of an application, it is necessary to calculate the generated inertia forces and the corresponding moment.

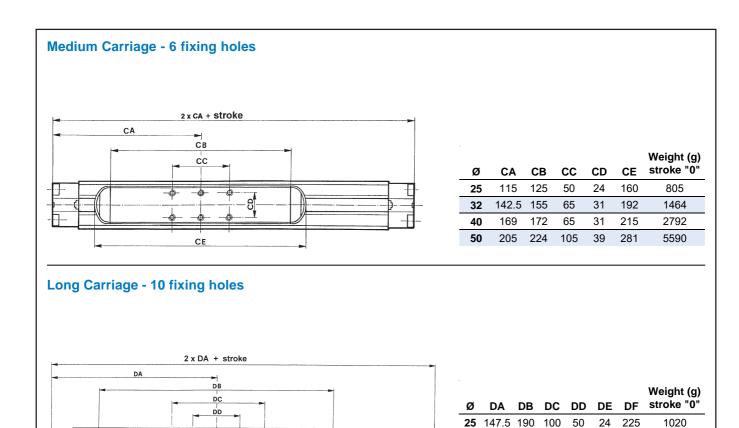
To calculate the inertia forces it is above all necessary to know the L length of the deceleration tract. With the use of the pneumatic cushion of the cylinder head the values are:




Ø (mm)	L (mm)					
25	25.0					
32	32.5					
40	41.5					
50	52.0					

The usual formula of mechanics are then applied. When moving, for instance, an M mass (kg) at a V impact speed (m/s) with b1, b2 and b3 (mm) arms to the longitudinal axis of the piston, the F inertia force, in longitudinal direction, and the corresponding momenta are calculated as follows:

While F, M_1 and M_3 can have both static and inertia components, M_2 is only a static component.



٠

(2020/10)

It is not advised to use this cyl. with heavy stresses.

N.B. In cases where the rodless cylinder is mounted onto external rigid guides, it is necessary to fit the floating mounting bracket to

Å

DF

뻥

the carriage (Series SF - 24 . . .), in order to isolate the cylinder from the rigid structure.

reserve
.⊑
keep
modifications
echnical

65

32

40 225

50

190

275

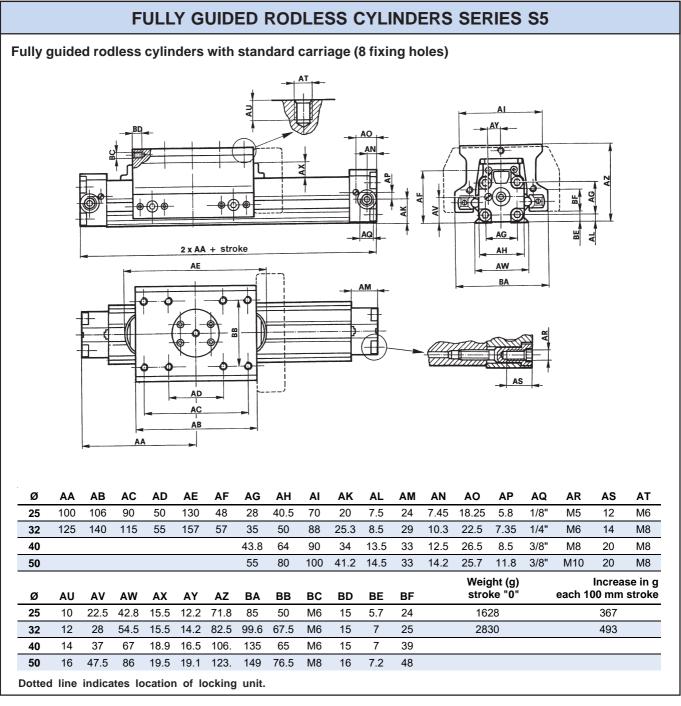
250 130

284

130 65 31 327

364 315 105

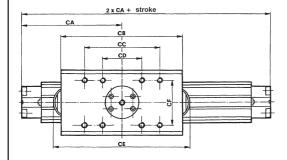
287


31

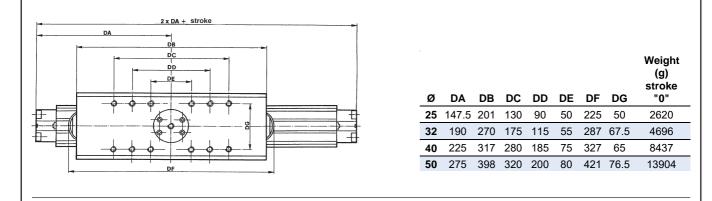
39 421

1914

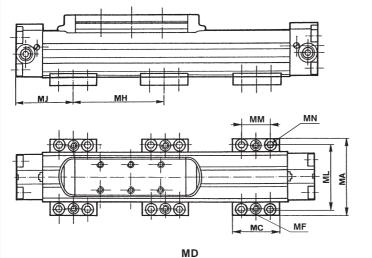
3685


7406

Values of the static load; please note that in dynamic conditions, the load must be reduced due to effects associated with the speed. A moment is the product of the load (Newton) and the arm (metres), i.e. the distance between the centre of gravity of the load and the longitudinal axis of the piston.


For	rce (at 6 b	ar)			ad	Ben	iding mor	ment 1	Forsional m	noment	Bending	moment		
	F		↓ P	1				M 1		M 2		М з		
	•													
Ø					Standard Carriag			Medi	um Ca	arriage	Long Carriage			
	F	P1	P2	P3	M1	M2	M3	M1	M2	M3	M1	M2	M3	
	(N)	(N)	(N)	(N)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)) (Nm)	(Nm)	(Nm)	(Nm)	
25	250	400	400	400	13	8	16	20	10	25	40	15	50	
32	420	400	400	400	20	9	27	30	12	40	55	18	75	
40	640	600	600	600	no	ot foresee	en	60	30	80	110	45	150	
50	1050	800	800	800	no	ot foresee	en	85	50	110	150	75	210	

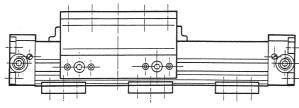
Medium carriage - 8 fixing holes

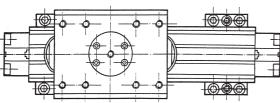

ø	СА	СВ	сс	CD	CE	CF	Weight (g) stroke "0"
25	115	136	90	50	160	50	1800
32	142.5	175	115	55	192	67.5	3332
40	169	205	180	75	215	65	6000
50	205	258	190	80	281	76.5	9948

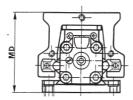
Long carriage - 12 fixing holes

FIXING SYSTEMS

Mounting plate for rodless cylinder Series S1

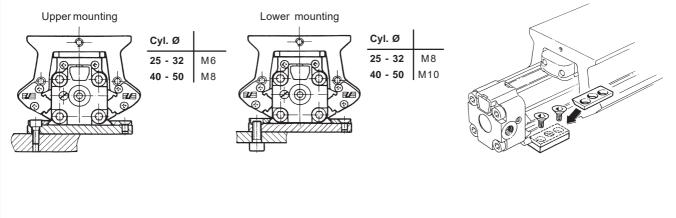


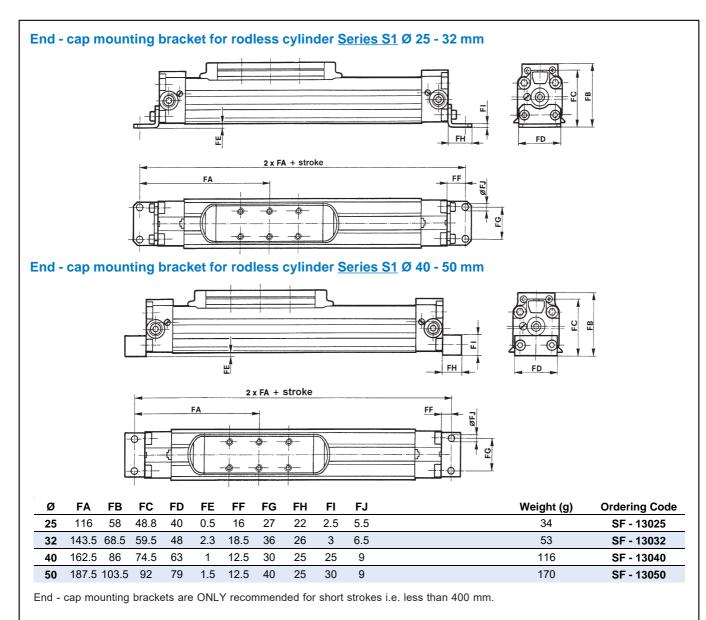

Cyl.Ø	MA	MB	MC	S1	S5	VL1	ME	MF	MG	МН	MI	MJ	ML*	ММ	MN	Mass (g)	Part number
25	78,5	63,5	50	65,6	79,8	82,3	12	M8	11	500	6,5	55	65,5	30	M6	310	SF - 12025
32	92	77,5	50	74,2	90,5	90,5	12	M8	11	600	5,5	60	79,5	30	M6	340	SF - 12032
40	117	96	60	95,8	116,6	116	15	M10	14	700	8	70	96	37,5	M8	660	SF - 12040
50	136	115	60	113	133,7	136,2	15	M10	14	800	8	70	115	37,5	M8	700	SF - 12050

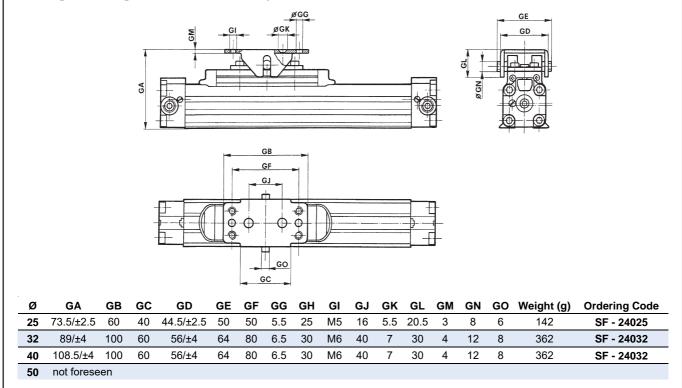

• Max. dimension in order to limit the deflection of the under its own weight

* For Ø 40-50 mm MB and ML are equal in value

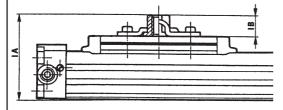
Mounting plate for rodless cylinder Series S5

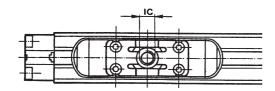


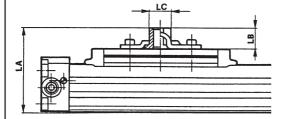


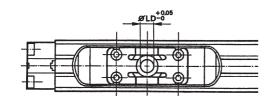

MG

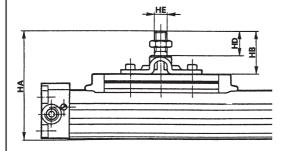
Plates are mounted by means of standard screws without disassembling any part of the cylinder (for the whole series).

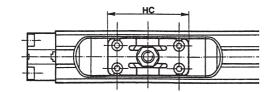



Floating mounting bracket for rodless cylinder Series S1

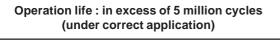

Female threaded bushing for rodless cylinder Series S1

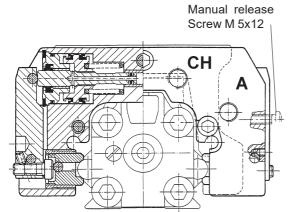

· .	001	0001										
_	ø	IA	IA IB I		Weight (g)	Ordering Code						
	25	75.5	18	M12	76	SF - 26025						
	32	87.2	21	M14	157	SF - 26032						
	40	108.5	21	M14	157	SF - 26032						
	50	not foreseen										


Female non-threaded bushing for rodless cylinder Series S1


Ø	LA	LB	LC	LD	Weight (g)	Ordering Code
25	70.5	13	18	10.1	73	SF - 28025
32	82.7	16.5	22	12	152	SF - 28032
40	102.2	16.5	22	12	152	SF - 28032
50	not fo	reseer	า			

Male threaded pin for rodless cylinder Series S1


ø	НА	НВ	нс	HD	HE	Weight (g)	Ordering Code
25	91	33.5	64	22	M12	105	SF - 27025
32	107.7	41.5	84	25	M14	260	SF - 27032
40	127.2	41.5	84	25	M14	260	SF - 27032
50	not fo	reseer	۱				

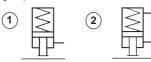


LOCKING UNIT for rodless cylinder Series S5

The Univer locking unit for rodless cylinders enables accurate positional control of the carriage at any point along its stroke. The unit can be mounted onto either end of the carriage and the high mechanical locking thrust can be further increased by means of an additional air signal.

Medium: filtered air, with or without lubrication Working pressure: 2 - 8 bar Ambient temperature: - 20° - 80°C

 A = Release
 Ch = Pneumatic lock

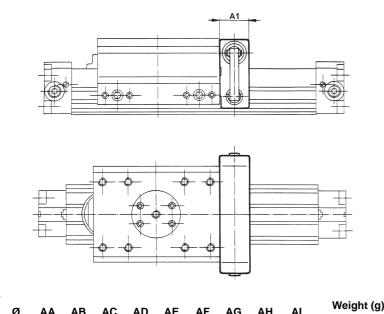

 Ø
 25
 32
 40
 50

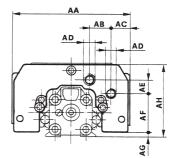
 A = CH
 M5
 1/8"
 1/8"

ATTENTION: by mounting the locking unit onto a Ø 25 cylinder, use a fitting with external diameter not greater than 15 mm.

- Minimum release pressure: 4 5 bar.
- Braking mode maintains carriage position during the inward or outward motion.
- Easy mounting on either side of the carriage sides.
- Permanent manual release can be achieved by two M5 screws.
- One standard type available: mechanical springs hold the carriage firmly in position when there is no control air signal (refer to fig. 1).

The mechanical locking unit is also capable of accepting an additional pneumatic control to amplify the locking thrust (see fig. 2).




✓ Upon request, the locking unit can be supplied with pneumatic control.

 Control unit: LX-7130 (pneumatic/mech. spring option) or LX-7150 (pneumatic/pneumatic option).

When using the pneumechanical unit the max. pressure to be applied is 6 bar.

 ø	AA	AB	AC	AD	AE	AF	AG	AH	AI	Weight (g) stroke "0"	Weight of locking unit	Total weight	Ordering Code
25	120	24.5	23	M5	16.5	34.5	5	71.5	32	1628	350	1978	L6 - S5025
32	132	25.3	23.7	1/8"	17.2	42.3	6.5	81.5	32	2830	460	3290	L6 - S5032
 40	150	26	32	1/8"	18.2	58.3	9	105	40	6000	820	6820	L6 - S5040
50	164	26	36	1/8"	19.8	72.5	12.7	125.7	51	9948	1450	11398	L6 - S5050